Search results

Search for "electrical resistance" in Full Text gives 74 result(s) in Beilstein Journal of Nanotechnology.

Upper critical magnetic field in NbRe and NbReN micrometric strips

  • Zahra Makhdoumi Kakhaki,
  • Antonio Leo,
  • Federico Chianese,
  • Loredana Parlato,
  • Giovanni Piero Pepe,
  • Angela Nigro,
  • Carla Cirillo and
  • Carmine Attanasio

Beilstein J. Nanotechnol. 2023, 14, 45–51, doi:10.3762/bjnano.14.5

Graphical Abstract
  • properties have been analyzed by electrical resistance measurements using a standard four-probe technique in a Cryogenic Ltd. CFM9T cryogen-free system. The microstrips were biased with a current of Ib = 10 μA. During the measurements, the error on the temperature value was less than 10 mK. The
PDF
Album
Full Research Paper
Published 05 Jan 2023

A TiO2@MWCNTs nanocomposite photoanode for solar-driven water splitting

  • Anh Quynh Huu Le,
  • Ngoc Nhu Thi Nguyen,
  • Hai Duy Tran,
  • Van-Huy Nguyen and
  • Le-Hai Tran

Beilstein J. Nanotechnol. 2022, 13, 1520–1530, doi:10.3762/bjnano.13.125

Graphical Abstract
  • conductivity of TiO2 [37]. Table 1 shows the EIS parameters obtained from fitting the measured results with equivalent circuits. The R1 values illustrate a low electrical resistance of the 0.1 M KCl solution, while the R2 values show that the TiO2 electrode has the highest resistance among the prepared
PDF
Album
Full Research Paper
Published 14 Dec 2022

Orally administered docetaxel-loaded chitosan-decorated cationic PLGA nanoparticles for intestinal tumors: formulation, comprehensive in vitro characterization, and release kinetics

  • Sedat Ünal,
  • Osman Doğan and
  • Yeşim Aktaş

Beilstein J. Nanotechnol. 2022, 13, 1393–1407, doi:10.3762/bjnano.13.115

Graphical Abstract
  • absorption of drugs. Therefore, the Caco-2 cell line derived from a human colorectal carcinoma was employed to simulate the epithelial cell layer. A monolayer of cells should have a transepithelial electrical resistance of around 500 Ω·cm2 to show similarity with intestinal lumen [70][71][72]. In Table 5
  • every 48 h for 21–25 days and cells were incubated in an incubator at 37 °C with 5% CO2 supply. Before performing the transmembrane permeability studies, the Caco-2 cell monolayer’s integrity was confirmed by measuring the transepithelial electrical resistance (TEER). Transmembrane permeability analyses
PDF
Album
Full Research Paper
Published 23 Nov 2022

Enhanced electronic transport properties of Te roll-like nanostructures

  • E. R. Viana,
  • N. Cifuentes and
  • J. C. González

Beilstein J. Nanotechnol. 2022, 13, 1284–1291, doi:10.3762/bjnano.13.106

Graphical Abstract
  • metallic-like character of some bulk crystals [34][40][41][42][43] and NWs [44] at high temperatures, revealed by a decrease in the electrical resistance as the temperature drops. This behavior is not observed in our material, which exhibits semiconductor behavior over the whole investigated temperature
PDF
Album
Supp Info
Full Research Paper
Published 08 Nov 2022

Modeling a multiple-chain emeraldine gas sensor for NH3 and NO2 detection

  • Hana Sustkova and
  • Jan Voves

Beilstein J. Nanotechnol. 2022, 13, 721–729, doi:10.3762/bjnano.13.64

Graphical Abstract
  • the I–V characteristics. The relative resistance change Res, was estimated, where R0 is the electrical resistance of PANI without any gas molecules and R is the electrical resistance of PANI in the presence of ammonia or nitrogen dioxide. The relative resistance change for ammonia gas molecules and
PDF
Album
Full Research Paper
Published 26 Jul 2022

Reliable fabrication of transparent conducting films by cascade centrifugation and Langmuir–Blodgett deposition of electrochemically exfoliated graphene

  • Teodora Vićentić,
  • Stevan Andrić,
  • Vladimir Rajić and
  • Marko Spasenović

Beilstein J. Nanotechnol. 2022, 13, 666–674, doi:10.3762/bjnano.13.58

Graphical Abstract
  • because glass slides are inexpensive and widely available, but also because the optical characteristics of deposited films can be subsequently examined [42]. For measuring the electrical resistance, the film was deposited onto Metrohm DropSens substrates with a pair of interdigitated electrodes (G-IDEPT10
  • layers implies a smaller electrical resistance. The relation of optical transparency and electrical resistance for all samples is given in Figure 6. The measured optical transmittance varied slightly depending on the exact spot chosen on each given sample. The measured resistance varied by about 20
  • Langmuir–Blodgett assembly to produce thin graphene films. By tuning centrifugation speed and solvent dilution volume, we produced films of different controlled thicknesses. We have shown that the optical transparency and electrical resistance of these films behave similarly to those of other films made of
PDF
Album
Full Research Paper
Published 18 Jul 2022

A chemiresistive sensor array based on polyaniline nanocomposites and machine learning classification

  • Jiri Kroutil,
  • Alexandr Laposa,
  • Ali Ahmad,
  • Jan Voves,
  • Vojtech Povolny,
  • Ladislav Klimsa,
  • Marina Davydova and
  • Miroslav Husak

Beilstein J. Nanotechnol. 2022, 13, 411–423, doi:10.3762/bjnano.13.34

Graphical Abstract
  • concentration due to PANI doping and the formation of charge transfer complexes [20]. The decrease of electrical resistance is caused by the greater mobility of the dopant ions, related to the development of PANI chains. Furthermore, the swelling effect contributes to the change in resistivity [21]. Statistical
PDF
Album
Full Research Paper
Published 27 Apr 2022

Morphology-driven gas sensing by fabricated fractals: A review

  • Vishal Kamathe and
  • Rupali Nagar

Beilstein J. Nanotechnol. 2021, 12, 1187–1208, doi:10.3762/bjnano.12.88

Graphical Abstract
  • p-type), fermi level control theory, and grain boundary barrier control theory models have been proposed to understand the fundamentals of sensing mechanism [31][36][87][88]. The changes in electrical resistance of materials from a microscopic viewpoint are addressed by electronic and chemical
  • sensitization mechanisms [26]. The mechanisms focusing on a macroscopic perspective deal with adsorption/desorption of surface atomic/molecular species or discuss how the bulk resistance and gas diffusion control mechanisms affect the charge transport [26][87][89]. The changes in electrical resistance of the
PDF
Album
Supp Info
Review
Published 09 Nov 2021

Structural and optical characteristics determined by the sputtering deposition conditions of oxide thin films

  • Petronela Prepelita,
  • Florin Garoi and
  • Valentin Craciun

Beilstein J. Nanotechnol. 2021, 12, 354–365, doi:10.3762/bjnano.12.29

Graphical Abstract
  • dielectric properties (e.g., SiO2 and ZnO) exhibit a dependence of the electrical resistance with temperature [22][23]. SiO2 and ZnO films are obtained by various deposition techniques, such as matrix-assisted pulsed laser evaporation (MAPLE) [24][25], spin coating of sol–gel precursor solutions [26], radio
PDF
Album
Full Research Paper
Published 19 Apr 2021

Nickel nanoparticle-decorated reduced graphene oxide/WO3 nanocomposite – a promising candidate for gas sensing

  • Ilka Simon,
  • Alexandr Savitsky,
  • Rolf Mülhaupt,
  • Vladimir Pankov and
  • Christoph Janiak

Beilstein J. Nanotechnol. 2021, 12, 343–353, doi:10.3762/bjnano.12.28

Graphical Abstract
  • tested in gas sensing measurements. Dry air was used as a reference gas. The electrical resistance was measured for the testing gas mixture and air. The response of a semiconductor sensor is the ratio between the electrical resistance in air and that in a gas medium. In the presence of reducing gases
  • (e.g., acetone or CO), the sensor resistance decreases. In the presence of oxidizing gases (e.g., NO2), the electrical resistance increases [7]. Figure 4 shows the sensor characteristics for the Ni@rGO/WO3 composite in 3000 ppm CO/N2 at 246 °С. A high sensor response of Rair/Rgas = 14.8 was detected
  • (Figure 5 right, Figure S2 in Supporting Information File 1). For a higher acetone concentration of 35,000 ppm, the sensor response was lower with Rair/Rgas = 4.2 (Figure 5 left, Figure S2 in Supporting Information File 1). At 240 °C the electrical resistance of the 0.35 wt % Ni@rGO/WO3 sample in a gas
PDF
Album
Supp Info
Full Research Paper
Published 15 Apr 2021

TiOx/Pt3Ti(111) surface-directed formation of electronically responsive supramolecular assemblies of tungsten oxide clusters

  • Marco Moors,
  • Yun An,
  • Agnieszka Kuc and
  • Kirill Yu. Monakhov

Beilstein J. Nanotechnol. 2021, 12, 203–212, doi:10.3762/bjnano.12.16

Graphical Abstract
  • applied potential [3], have shown great potential for next-generation information technologies. This change of the electrical resistance often faces local redox reactions inside the oxide layer [4]. From the chemical point of view, the active switching layer can be downsized to individual molecular units
PDF
Album
Full Research Paper
Published 16 Feb 2021

High-responsivity hybrid α-Ag2S/Si photodetector prepared by pulsed laser ablation in liquid

  • Raid A. Ismail,
  • Hanan A. Rawdhan and
  • Duha S. Ahmed

Beilstein J. Nanotechnol. 2020, 11, 1596–1607, doi:10.3762/bjnano.11.142

Graphical Abstract
  • without CTAB, the forward current increased linearly with voltage and tended to saturate at a voltage of 8 V due to the effect of series resistance. The forward current increased after adding CTAB due to the reduced electrical resistance of Ag2S. The reverse current of the heterojunction prepared in pure
PDF
Album
Full Research Paper
Published 21 Oct 2020

Superconductor–insulator transition in capacitively coupled superconducting nanowires

  • Alex Latyshev,
  • Andrew G. Semenov and
  • Andrei D. Zaikin

Beilstein J. Nanotechnol. 2020, 11, 1402–1408, doi:10.3762/bjnano.11.124

Graphical Abstract
  • voltage in the form of pulses. By applying a bias current the symmetry between positive and negative voltage pulses is broken and, as a result, a superconducting nanowire acquires a non-vanishing electrical resistance down to the lowest temperatures [5][6]. This effect was directly observed in a number of
PDF
Album
Full Research Paper
Published 14 Sep 2020

Controlling the proximity effect in a Co/Nb multilayer: the properties of electronic transport

  • Sergey Bakurskiy,
  • Mikhail Kupriyanov,
  • Nikolay V. Klenov,
  • Igor Soloviev,
  • Andrey Schegolev,
  • Roman Morari,
  • Yury Khaydukov and
  • Anatoli S. Sidorenko

Beilstein J. Nanotechnol. 2020, 11, 1336–1345, doi:10.3762/bjnano.11.118

Graphical Abstract
  • system with an insert for the flowing gas. Figure 4 represents the principle scheme of the measurements performed in this work. This “centipede-like” sample design facilitates the measurements of the electrical resistance values in different synapse-like segments simply by alternating the arms. Before
PDF
Album
Full Research Paper
Published 07 Sep 2020

Epitaxial growth and superconducting properties of thin-film PdFe/VN and VN/PdFe bilayers on MgO(001) substrates

  • Wael M. Mohammed,
  • Igor V. Yanilkin,
  • Amir I. Gumarov,
  • Airat G. Kiiamov,
  • Roman V. Yusupov and
  • Lenar R. Tagirov

Beilstein J. Nanotechnol. 2020, 11, 807–813, doi:10.3762/bjnano.11.65

Graphical Abstract
  • (QUANTUM DESIGN PPMS-9, USA) was used for studying the temperature dependence of the electrical resistance of the VN thin films and Pd0.96Fe0.04/VN and VN/Pd0.92Fe0.08 heterostructures in the temperature range of 4.2–300 K. A four-probe resistance measurement scheme was used. Figure 5 shows the measurement
  • . Saturation magnetization Ms(T) as a function of the temperature of the Pd0.96Fe0.04/VN (green symbols) and VN/Pd0.92Fe0.08 (red symbols) heterostructures measured in a magnetic field of 200 Oe. Temperature dependence of the electrical resistance of the VN film and the Pd0.96Fe0.04/VN and VN/Pd0.92Fe0.08
PDF
Album
Full Research Paper
Published 15 May 2020

Structural optical and electrical properties of a transparent conductive ITO/Al–Ag/ITO multilayer contact

  • Aliyu Kabiru Isiyaku,
  • Ahmad Hadi Ali and
  • Nafarizal Nayan

Beilstein J. Nanotechnol. 2020, 11, 695–702, doi:10.3762/bjnano.11.57

Graphical Abstract
  • the two adjacent sample holders. Four-point probe measurements Electrical analyses that involved the measurements of electrical resistivity and sheet resistance of the prepared thin films were performed using a four-point probe system (Pro 4 Lucab Lab). The electrical resistance of the samples was
PDF
Album
Full Research Paper
Published 27 Apr 2020

Electromigration-induced directional steps towards the formation of single atomic Ag contacts

  • Atasi Chatterjee,
  • Christoph Tegenkamp and
  • Herbert Pfnür

Beilstein J. Nanotechnol. 2020, 11, 680–687, doi:10.3762/bjnano.11.55

Graphical Abstract
  • planes. Secondly, due to its high directionality, EM thins one grain while depositing the material on an adjacent grain. Therefore, the local electrical resistance is determined by the contact area between the grain that is thinned and the adjacent grain that is taking up the material. Only this cross
PDF
Album
Full Research Paper
Published 22 Apr 2020

Multiwalled carbon nanotube based aromatic volatile organic compound sensor: sensitivity enhancement through 1-hexadecanethiol functionalisation

  • Nadra Bohli,
  • Meryem Belkilani,
  • Juan Casanova-Chafer,
  • Eduard Llobet and
  • Adnane Abdelghani

Beilstein J. Nanotechnol. 2019, 10, 2364–2373, doi:10.3762/bjnano.10.227

Graphical Abstract
  • ., single-wall carbon nanotube (SWCNT), multiwall carbon nanotube (MWCNT), graphene, graphene oxide (GO)) present a sensitive active layer exhibiting an electrical resistance change while in contact with the target gas due to interactions at the molecular level [7][8]. These interactions, depending whether
  • operating frequency of 1 kHz. Once a stable electrical resistance was achieved in the presence of the carrier gas (pure dry air, purchased from Air Liquide), we injected the adequate concentration of the target VOC. The flow rate was set to 200 standard cubic centimetres per minute. All measurements were
PDF
Album
Supp Info
Full Research Paper
Published 04 Dec 2019

Adsorption and desorption of self-assembled L-cysteine monolayers on nanoporous gold monitored by in situ resistometry

  • Elisabeth Hengge,
  • Eva-Maria Steyskal,
  • Rupert Bachler,
  • Alexander Dennig,
  • Bernd Nidetzky and
  • Roland Würschum

Beilstein J. Nanotechnol. 2019, 10, 2275–2279, doi:10.3762/bjnano.10.219

Graphical Abstract
  • 20 μF/cm2 (Figure 2b, solid blue curve), which is still significantly lower than the initial value. The relative change in electrical resistance during cysteine desorption from the (111) planes and subsequent cycling between −900 and −50 mV was monitored in situ for sample B, as shown in Figure 3. It
  • cysteine concentration in solution, which would affect the time period of the adsorption [24], and the pH value of the solution, which would impact the stability of the SAMs [25], could be examined further. Relative change in electrical resistance measured in situ during the exposure of npAu in 20 mM
  • ]. The blue solid curve was recorded after the dashed curves. All CVs were conducted in 1 M KOH at a scan rate of 1 mV/s. Please note the change in x-axis scale between (a) and (b). Cyclic voltammetry of sample B modified with cysteine (a) and concomitantly measured change in relative electrical
PDF
Album
Letter
Published 18 Nov 2019

High-temperature resistive gas sensors based on ZnO/SiC nanocomposites

  • Vadim B. Platonov,
  • Marina N. Rumyantseva,
  • Alexander S. Frolov,
  • Alexey D. Yapryntsev and
  • Alexander M. Gaskov

Beilstein J. Nanotechnol. 2019, 10, 1537–1547, doi:10.3762/bjnano.10.151

Graphical Abstract
  • silicon in the ZnO/SiC_15 nanocomposite. The formation of nanocomposites is accompanied by a significant increase in the electrical resistance of the material, in comparison with ZnO nanofibers, over the entire temperature range studied (Table 1). The resistance of SiC under these conditions is in the
  • SiC content in nanocomposites (within the error, Table 1). The growth of the electrical resistance and Ea can be associated with an increase in the concentration of surface oxygen species (confirmed by XPS), which form different acceptor levels at the ZnO surface and at the ZnO/SiC heterojunction. The
PDF
Album
Supp Info
Full Research Paper
Published 26 Jul 2019

Selective gas detection using Mn3O4/WO3 composites as a sensing layer

  • Yongjiao Sun,
  • Zhichao Yu,
  • Wenda Wang,
  • Pengwei Li,
  • Gang Li,
  • Wendong Zhang,
  • Lin Chen,
  • Serge Zhuivkov and
  • Jie Hu

Beilstein J. Nanotechnol. 2019, 10, 1423–1433, doi:10.3762/bjnano.10.140

Graphical Abstract
  • was defined as: Here, Ra and Rg are the electrical resistance when the sensor is in air or exposed to the target gas, respectively. The time required for the sensor resistance decrease to 10% or recover to 90% of the original value is called response and recovery time, respectively. (a) XRD patterns
PDF
Album
Supp Info
Full Research Paper
Published 17 Jul 2019

Gas sensing properties of individual SnO2 nanowires and SnO2 sol–gel nanocomposites

  • Alexey V. Shaposhnik,
  • Dmitry A. Shaposhnik,
  • Sergey Yu. Turishchev,
  • Olga A. Chuvenkova,
  • Stanislav V. Ryabtsev,
  • Alexey A. Vasiliev,
  • Xavier Vilanova,
  • Francisco Hernandez-Ramirez and
  • Joan R. Morante

Beilstein J. Nanotechnol. 2019, 10, 1380–1390, doi:10.3762/bjnano.10.136

Graphical Abstract
  • , while the inner pair is used for the measurement of the electrical potential drop. This 4-electrode scheme of electrical resistance measurement improves the quality of sensor response detection. In spite of the large number of works dedicated to the use of nanowires as conductometric gas sensors, these
  • manufactured by the sol–gel method is several times higher than that of the individual nanowire device. The sensor response, S, is defined as the relative difference of electrical resistance: where R0 is the sensor resistance in air, and Rx is the resistance when exposed to ambient in the explored medium. The
PDF
Album
Full Research Paper
Published 08 Jul 2019

Effects of gold and PCL- or PLLA-coated silica nanoparticles on brain endothelial cells and the blood–brain barrier

  • Aniela Bittner,
  • Angélique D. Ducray,
  • Hans Rudolf Widmer,
  • Michael H. Stoffel and
  • Meike Mevissen

Beilstein J. Nanotechnol. 2019, 10, 941–954, doi:10.3762/bjnano.10.95

Graphical Abstract
  • blood–brain barrier permeability rBCEC4 cells were grown on filter insert membranes to allow for the investigation of NP effects on BBB permeability. The transport of two tracers across the cell monolayer and transendothelial electrical resistance (TEER) were measured. TEER measurements showed a
  • formation on DIV3. Except for control filters, cells were exposed for 24 h to either PCL- or Au-NPs or stimulated with 10% DMSO (positive control) on DIV2. Transendothelial electrical resistance (TEER) was measured on DIV1 to DIV3 using the Millicell ERS-2 volt ohm meter (Merck Millipore, Germany). TEER
PDF
Album
Full Research Paper
Published 25 Apr 2019

In situ AFM visualization of Li–O2 battery discharge products during redox cycling in an atmospherically controlled sample cell

  • Kumar Virwani,
  • Younes Ansari,
  • Khanh Nguyen,
  • Francisco José Alía Moreno-Ortiz,
  • Jangwoo Kim,
  • Maxwell J. Giammona,
  • Ho-Cheol Kim and
  • Young-Hye La

Beilstein J. Nanotechnol. 2019, 10, 930–940, doi:10.3762/bjnano.10.94

Graphical Abstract
  • and the potentiostat inputs. The electrical resistance between them was <10 ohms. This low resistance allowed us to perform EIS. The cell was placed in a glass enclosure on the AFM. A leak-free ultrapure oxygen line from a custom designed glove box flange was connected to the cell enclosure of the AFM
PDF
Album
Supp Info
Full Research Paper
Published 24 Apr 2019

Wearable, stable, highly sensitive hydrogel–graphene strain sensors

  • Jian Lv,
  • Chuncai Kong,
  • Chao Yang,
  • Lu Yin,
  • Itthipon Jeerapan,
  • Fangzhao Pu,
  • Xiaojing Zhang,
  • Sen Yang and
  • Zhimao Yang

Beilstein J. Nanotechnol. 2019, 10, 475–480, doi:10.3762/bjnano.10.47

Graphical Abstract
  • after the drying of the graphene solution. The sensing performance of the graphene/WG-hydrogel composite material is shown in Figure 3a. The sensitivity of the graphene/WG-hydrogel composite sensor, represented by the gauge factor (the ratio of the relative electrical resistance change ΔR/R to the
PDF
Album
Supp Info
Letter
Published 14 Feb 2019
Other Beilstein-Institut Open Science Activities